首页 > 实用范文 > 毕业论文 > 论文范文 > 生命科学论文(优秀3篇)正文

《生命科学论文(优秀3篇)》

时间:

生命科学是以生命为研究对象的科学和技术的总称,它是研究生命活动及其规律的科学,并涉及到医学、农学、健康、环境等领域。下面是整理的生命科学论文(优秀3篇),希望能够给予您一些参考与帮助。

生命科学概论论文 篇1

【摘要】

在人类的历史上,计算机的诞生和发展无疑有着举足轻重的地位。计算机水平的每一次提升都会带给社会巨大的推动。虽然我们一直在努力,希望计算机的性能越来越强,但是现在的计算机的某些技术已经达到了极限,不可能再提高了。所以,寻找另一个提高的方向已十分必要。现在,生物计算机理论的提出和诞生给人们带来了新的的希望。如果有朝一日生物计算机能够普及,那这将会是计算机发展史上的一个重大突破。

【关键词】

生物计算机 DNA 神经元 芯片

【正文】

一、计算机的发展

人们通常所说的计算机,是指电子数字计算机。一般认为,世界上第一台数字式电子计算机诞生于1946年2月,它是美国宾夕法尼亚大学物理学家莫克利(J.Mauchly)和工程师埃克特(J.P.Eckert)等人共同开发的电子数值积分计算机(Electronic Numerical Integrator And Calculator,简称ENIAC)。ENIAC虽是第一台正式投入运行的电子计算机,但它不具备现代计算机“存储程序”的思想。1946年6月,冯·诺依曼博士发表了“电子计算机装置逻辑结构初探”论文,并设计出第一台“存储程序”的离散变量自动电子计算机(The Electronic Discrete Variable Automatic Computer,简称EDVAC)。【1】

自冯·诺依曼设计的EDVAC计算机始,直到今天我们用芯片制作的多媒体计算机为止,电脑一代又一代,都没能够跳出“诺依曼机”的体系结构。冯·诺依曼为现代计算机的发展指明了方向。但是,随着生物计算机、人工智能和神经网络计算机的发展,“诺依曼机”一统天下的格局已经被打破。【2】

二、生物计算机的诞生

1994年,一位加州科学家首次使用试管中的DNA来解一道简单的数学题,从而产生了利用DNA来储存和处理信息的创意。这一创意也为计算机带来了新的课题与发展方向。科学家们在研究中发现,仿生学同样可以应用到计算机领域中。通过对生物组织体的研究,发现组织体是由无数的细胞组成,细胞由水、盐、蛋白质和核酸等有机物组成。而有些有机物中的蛋白质分子像开关一样,具有开与关的功能。因此,人类可以利用遗传工程技术,仿制出这种蛋白质分子,用来作为元件制成计算机,科学家把这种计算机叫做生物计算机。【3】

计算机工业在近几十年内飞速发展,然而目前,晶体管的密度已经达到当前所用技术的理论极限。所以,人们在不断地寻找新的计算机结构。另外,人们在研究人工智能的同时,借鉴生物界的各种处理问题的方式,提出了一些生物计算机的模型,部分模型已经解决了一些经典计算机难以解决的问题。【4】

三、生物计算机的优良特性

生物计算机目前主要有以下几类:生物分子或超分子芯片;自动机模型;仿生算法;生物化学反应算法。其中自动机模型以自动理论为基础,致力于寻找新的计算机模式,特别是特殊用途的非数值计算机模式。目前研究的热点集中在基本生物现象的类比,如神经网络、免疫网络、细胞自动机等。不同自动机的区别主要是网络内部连接的差异,其基本的特征是集体计算,或称为集体主义,在非数值计算、模拟、识别方面有极大的潜力。神经网络系统模拟大脑的工作方式,由大量简单的神经元广泛相互连接而成,形成一种拓扑结构。大脑具有相当高级的信息处理能力。与传统计算机模型相比,大脑具有如下特征:首先是大规模并行的处理能力;其次是大脑具有很强的“容错性”和联想功能;第三是大脑具有很强的自适应能性和自组织性。在这些方面,目前的传统计算机模型是难于实现的。【5】

生物计算机的主要原材料是生物工程技术产生的蛋白质分子,并以此作为生物芯片。生物元件比硅芯片上的电子元件要小很多,甚至可以小到几十亿分之一米,而且生物芯片本身具有天然独特的立体化结构,其密度要比平面型的硅集成电路高五个数量级。如让几万亿个DNA分子在某种酶的作用下进行化学反应就能使生物计算机同时运行几十亿次。

生物计算机芯片本身还具有并行处理的功能,其运算速度要比当今最新一代的计算机快10万倍,能量消耗仅相当于普通计算机的十亿分之一,存储信息的空间仅占百亿亿分之一。生物芯片一旦出现故障,可以进行自我修复,所以具有自愈能力。生物计算机具有生物活性,能够和人体的组织有机结合起来,尤其是与大脑和神经系统相连。这样,生物计算机就可直接接受大脑的综合指挥,成为人脑的辅助装置或扩充部分,并能由人体细胞吸收营养补充能量,因而不需要外界能源。它将成为能植入人体内,帮助人类学习、思考、创造、发明的最理想的伙伴。另外,由于生物芯片内流动电子间碰撞的可能性极小,几乎不存在电阻,所以生物计算机的能耗极小。【6】

四、我国的生物计算机

我国的首台生物计算机,是由上海交通大学生命科学研究中心和中科院上海生命科学院营养科学研究合作完成的,实验中工作人员把自动机与表面DNA计算结合到了一起。这在我国属首次,相关论文发表在中国《科学通报》第49卷第1期的英文版上。据介绍,这一DNA计算机采用双色荧光标记对输入与输出分子进行同时检测,用测序仪对自动运行过程进行实时监测,用磁珠表面反应法固化反应提高可控性操作技术等,以至于最终在一定程度上完成模拟电子计算机处理0和1信号的功能。将来通过计算芯片技术,把电子计算机的计算功能进行本质上的提升,在理论上和潜在的应用上都有重大意义。【7】

五、生物计算机的功能

生物计算机不仅有很好的性能,而且它的功能也十分强大。生物计算机既然是用一个个分子构成的,那么它的体积就可以达到分子尺寸的水平,甚至注入人的血液内,达到“人机一体化”,检测人体的情况。l998年英国雷丁大学的科学家凯文·沃尔威克把一块芯片植入他的左手臂,这个芯片从此将他个人和电脑网络连在一起。在接下来的九天里,当他步入教学主楼,无需出示身份证,大门的电脑就根据他手臂上芯片传递的信息认出了他,芯片还替他打开了实验室的自动门,帮他开灯。美国EMV公司在研究能够帮助盲人重现光明的生物集成电路时,就用以蛋白质为基础的生物微器件植入盲人眼球后部,利用胚胎神经细胞作为桥梁,同大脑视觉皮层联系起来,使盲人恢复“视力”。通过生物计算机,病人可以把自己的病情通过芯片传给医生体内的芯片,永远不担心病例丢失,病情讲不清楚。【8】

六、生物计算机的发展前景

目前电脑的发展方向,一是使用生物芯片,二是使用量子器件。它们的工作原理与目前使用的电脑有本质上的不同。生物芯片的原理是在分子水平上,与生物学水平一致;而量子器件的原理是在更微观的原子、光子层次水平上。生物芯片也称为分子芯片,其元件大小都在分子尺度内,而生物计算机的关键在于DNA大分子操作的问题上。现有的计算机基本构件是开关元件,要制造生物计算机需要有开关元件的有机分子,即DNA分子。美国科学家埃德曼指出:DNA分子中含有大量的遗传密码,分子之间在某种酶的作用下完成生物化学反应,从一种基因代码变为另一种基因代码,反应前的基因代码作为输入数据,反应后的基因代码作为运算结果。2000年美国加利福尼亚大学洛杉矶分校科学家根据生物大分子的不同形态,成功研制了DNA电脑的分子开关。【9】

目前,DNA计算机已经可以对赫姆震兹等数学问题求解。预计在10到15年内就可能制造出与微电子芯片相融合的高级DNA计算机。DNA计算机可以实现超大规模并行运算,运算速度极快,几天的运算量就相当于目前世界上所有计算机问世以来的总运算量,11立方米的DNA溶液的存储容量可以超过目前世界上所有计算机的存储量。而且DNA计算机耗能极少,只有一台普通计算机的l0亿分之一。它可以实现现有计算机无法实现的模糊推理功能和神经网络运算功能,使真正的智能计算机得以实现。目前美、日、德等国科学家正在研制一种在微电子芯片上生长神经网络的方法,希望研制出一种具有生命力的智能神经网络,并将神经网络的神经元与计算机芯片连接起来,用计算机来控制芯片上的神经元,进而达到控制动物的神经元。

现在,生物计算机仅处于起步阶段。但不论如何,DNA计算机的提出,拓宽了人们的视野,启发人们用算法的观念研究生命,并向众多领域提出了挑战。要想真正进入实用阶段还需要更多的时间和科学家更多的艰辛探索。【10】

参考文献

【1】中国科学院计算技术研究所,电子计算机的诞生,计算机发展史,2011年版。

【2】孙宏滨,胡美鑫,关于生物计算机的思考,知识经济,2009年8期。

【3】J.N Corsellis,A.KH.Miller,Aunals of Human Biology,1977年9月22日。

【4】孙宏滨,胡美鑫,关于生物计算机的思考,知识经济,2009年8期。【5】Scientific American,神经元计算机,2003年3月。

【6】黄俞成,生物计算机,北京电子,2006年2月。

【7】刘军,首台计算机,首都医药,2004年4期。

【8】杨宝华,孙中涛,关于生物计算机技术研究的思考,仿生技术推动下的计算机发展生产率系统,2002年1期。

【9】曹来发,生物电脑最新进展,科技情报开发与经济,2005年12期。

【10】殷海滨,第六代计算机,中学生物学,2007年8期。

生命科学概论论文 篇2

生命科学哲学(Philosophy Of Biological Science)是本世纪六七十年代兴起的一股科学哲学思潮,虽然它的兴起主要是以本世纪50年代以后生命科学的蓬勃发展为基础,但从事生命科学哲学研究的哲学家们并不局限于把他们的哲学看作是一门部门哲学,而是更进一步,把他们的哲学看作是科学哲学的新范式:一种与传统的根植于物理科学之上的科学哲学相对的新的科学哲学。

因此,当代人们提到生命科学哲学就有两层含义。狭义地讲,生命科学哲学是关于生物学的哲学,主要研究生命的本质、生物学的理论结构、概念框架、一般方法等问题。换句话说,生命科学哲学就是关于生命的本体论、认识论和方法论的哲学学科。在此意义上,“生命科学哲学”即是“生物学哲学”,它是科学哲学的一个子学科。广义地讲,生命科学哲学是科学哲学的新思潮。传统的科学哲学究其根本,都是以物理科学(包括物理学和化学等学科)为根据的,所以新哲学家们把这种哲学称之为物理科学哲学(Philosophy Of Physical Science)。新哲学则主要是以生命科学为基础而又兼顾物理科学。所以为了突出新哲学与传统哲学的不同,一些哲学家把这种新哲学称之为生命科学哲学。

1.生命科学哲学兴起的背景

自然科学是哲学的基础,任何一种哲学的产生都与当时的科学背景密切相关。近代科学是从1543年开始的,虽然这一年出版的两本伟大著作中的一本——维萨里的《人体的构造》是生物学的一个分支,可是其后的一百多年,生物学并没有突飞猛进的发展,而运动学和力学却首先得以快速发展。1687年,牛顿的《自然哲学的数学原理》出版,使经典力学这座宏伟大厦最终落成。此后,物理科学的其它学科也都先后发展起来并逐步成熟。与此相对,生物学在牛顿时代尚处于孕育时期,用恩格斯的话说就是“还处于搜集材料的阶段”,牛顿的物理革命在当时并没有引起生物学的革命性变革。生物学思想的重大革新是在19世纪和20世纪才开始产生的。因此,当科学哲学在17世纪和18世纪开始发展起来的时候,或者说,当培根、笛卡尔、莱布尼兹和康德论述科学和科学方法时,完全是以物理科学为基础的。在这种情况下,物理科学的思想和方法自然成了评判一切科学的标准,大多数哲学家理所当然地把物理科学看作是科学的标准范式,认为一旦理解了物理科学,就能理解其它任何科学。尽管早在19世纪中叶,达尔文就曾说过生物学的成就将会使哲学出现新繁盛,可是19世纪的科学哲学仍然完全根植于物理科学之中,不论是第一代实证主义(孔德)还是第二代实证主义(马赫),他们关于科学的本质,科学的理论结构和概念框架、科学方法等等的论述,完全是以经典物理学为依据的。进入20世纪,实证主义发展到了它的第三代——逻辑实证主义。正如提出这种理论的核心人物所说,逻辑实证主义主要依据的自然科学理论是数理逻辑和20世纪初诞生的相对论和量子力学。面对这种情况, 著名的生物学家和哲学家恩斯特·迈尔(ErnstMayr)不无遗憾地说:“自从伽利略、笛卡尔、牛顿以来直到20世纪中叶,科学哲学一直由逻辑学、数学和物理学所左右达数百年之久”( 〔2〕.piv)。

然而,本世纪中叶以后,由于传统科学哲学的自身危机以及分子生物学革命和综合进化论的革新,使哲学家们开始转向对生物学的哲学概括,以便从生物学中找出科学的新范式,于是,有关生物学的哲学思考成为西方科学哲学讨论的一个最热点的领域之一。在这种讨论中,生物学哲学作为一门学科逐步成熟。

我们先从传统科学哲学的危机谈起,传统科学哲学有三个主要的教条:一是分析命题和综合命题的区分,认为自然科学的命题是综合命题;第二是还原论,“即认为每一个有意义的陈述都等值于某种以指称直接经验的名词为基础的逻辑构造”;第三是演绎的解释理论,认为科学解释就是推理,一个需要解释的对象,只要它能从一些规律性陈述和一些前提条件中推导出来,它就得到了解释。其中第二点是逻辑实证主义的中心命题,这个命题换个说法就是认为,在科学中,观察(或经验)和理论是可以完全分开的,科学的本质就以经验为基础建立科学理论,科学理论的正确与否就是看它能否得到证实。奎因在《经验论的两个教条》中已对这种经验与理论的二分法以及第二个教条进行了批评。不过,决定性的批判则来自波普尔。波普尔认为,从逻辑的角度看,完全证实是不可能的,然而反过来,证伪却是可能的。由此,波普尔提出了证伪主义的科学纲领:科学的标志不在于它的可证实性,而在于它的可证伪性。由于波普尔的工作,科学哲学开始发生一个重大的转变:从研究科学理论的静态结构转向研究科学理论的历时结构。于是库恩的范式论、拉卡托斯的研究纲领方法论、费耶阿本德的无政府主义方法论等科学哲学理论相继出现,使传统的科学哲学出现严重的危机。

我们再从生物学本身的发展看。自从1953年沃森(J.D.Watson)和克里克(F.H.C.Crick)认定DNA的双螺旋结构以来,生物学便跨进了飞速发展的新时代。短短十多年的时间,遗传密码就得以破译,基因的作用机理也弄清楚,遗传工程亦开始实施。同时,由于新知识的渗透和综合,生物学的一些古老的学科,如进化论、胚胎学、分类学等也面貌一新。一时间,世界范围内出现了一股研究生物学的热潮,生物学成为继相对论和量子力学革命以来发展最快,成就最多的学科。生物学的这些革命性发展自然引起越来越多的哲学家对它的关注。他们或者利用生物学的成就重新评价以往科学哲学的适当性,或者从生物学中总结出独特的认识论、方法论和本体论问题。

传统科学哲学的危机以及生物学的持续发展因此使生命科学哲学成为当代科学哲学研究中的最激动人心的领域。各种论文和论著大量涌现。1985年,在一些哲学家和生物学家的努力下,一本专门讨论生命科学哲学的杂志——《生物学与哲学》也在西方创刊。作为一股新的科学哲学思潮的生命科学哲学就是在70年代兴起的,在80年代和90年代,这门学科逐步成熟并不断发展。

2.自主论和分支论:当代生命科学哲学的两大派别

近来西方出版的几乎所有生物学哲学的著作都以生物学在科学体系中占有什么位置,或者说生物学与物理科学相比有什么不同这个问题作为开篇。按照罗森伯格的说法,生物学和物理科学的关系问题是“生物学哲学的中心问题”。在此,我们可以换个说法,把这一问题看作是生物学哲学的基本问题,因为,第一,这一问题是任何一个生物学哲学家必须首先提出并要作出回答的问题。“生物学与其它自然科学是否不同和怎样不同是生物学哲学… …所面对的最突出、最明显、经常被提出、争议最多的问题”(〔3〕. P13)。第二,对这一问题的不同回答方式及结果,决定着生物学哲学讨论的几乎所有其它问题的回答方式及结果。生物学家和哲学家提出的有关生物学的逻辑的、认识论、本体论和方法论的较具体问题几乎都是围绕这一问题展开的,比如还原论与突现论的争论,关于社会生物学科学性争论,心身关系的争论等等都是如此。第三,对于生物学家和生物学哲学家来说,对这一问题的不同回答反映了他们对生物学应当前进的方向的不同看法。生物学的研究应当采取什么样的方法?未来生物学的重点在什么地方?对生物学和物理学关系问题的不同回答,直接关系到对这些问题的看法。

关于生物学的地位或者说生物学与物理科学关系的争论一直在两对立的派别之间进行,这两个派别,一个可称之为分支论,一个可称之为自主论。分支论认为,生物学在原理和方法上与物理科学并没有什么不同,而且未来的研究到了一定的时候会将整个生物学还原为物理科学。与之相对,自主论则认为生物学理所当然地是一门自主的科学,因为它研究的对象、它的概念结构和方法论与物理科学根本不同。

联系到前面提到的生命科学哲学兴起的背景,我们就可以看出,分支论和自主论实际上是对传统科学哲学危机和生物学迅速发展的两种不同的反映。

从科学哲学的转折来看,本世纪五十年代后,由于波普尔的批判,科学哲学从逻辑实证主义走向与之相对的历史主义。然而,并不是所有的哲学家都在这种转折中追随波普尔、库恩等人放弃了实证主义,相反,有许多哲学家仍然坚持实证主义的基本原则,只是在细节上对实证主义作了不同程度的修改。 这些哲学家有人把他们称作后实证主义者(Postpositivist)。后实证主义的基本观点是:

(1)科学是通过建立越来越普遍的经实验验证并具有解释能力的经验概括发展的,这些经验概括进一步被组织到更普遍的理论中去以更加扩展和加深这些概括的解释的统一性和预言的精确性;

(2)科学解释就是要把被解释的对象归并到普遍的规律或定律之下,因此,任何科学都需要规律或定律或至少是可改进的概括;

(3)科学需要规律或定律还因为实践的预言和控制也是依据规律或定律做出的。没有规律或定律,不仅解释是不可能的,预言和控制就更不可能。

(4)不同的学科有不同的发现、规律和理论,但所有这些发现、 规律和理论将最终组成一个连贯的理论阶梯,在这个理论阶梯中,可从最基本的物理学的理论和规律出发推演出所有其它学科的理论和规律,即所有的学科最终可统一于物理学。

当然后实证主义的观点并不仅是我们所列的这些,但对我们的问题这已足够。很显然,后实证主义的这些观点只不过是对实证主义的进一步修正而已,它们的基础仍然是物理科学。在生物学的惊人发展面前,这样的关于科学本性的结论适合生物学吗?

很显然,从生物学目前的状况看,它还不能立刻地,明显地满足后实证主义的描述。生物学目前还不象物理科学那样有许多简单、精确、相互联结并具有解释和预言能力的定律或规律;它的许多发现和描述语言与物理学和化学的发现和语言很少联系;它研究的模型系统的普遍性也是有限的。所有这些特征使它成为验证后实证主义科学哲学的很好的场所。这些不同是表面的、暂时的,还是本质的、永恒的呢?

于是,在哲学家中间,生物学与物理学是否不同和怎样不同的问题,就变为生物学是否和怎样与后实证主义的哲学图景相符合的问题。回答相符合的哲学家,就竭力从生物学中寻找材料证明后实证主义哲学图景的普遍性,并竭力证明生物学与物理学的上述差别是暂时性的。回答不相符合的哲学家则相反,他们从生物学寻找材料反对后实证主义的哲学思想,并竭力表明,生物学与物理学差别是永远不会消失的。

以上是分支论和自主论争论的哲学根源——后实证主义和反实证主义(antipositivism)。分支论和自主论的争论还有其科学自身发展的依据。

本世纪中叶以后,生物学中最激动人心的事件就是分子生物学的革命。由于这一革命,生物学的许多现象都可根据DNA 分子的结构得到解释。分子生物学的成功使许多生物学家以及哲学家坚信,生物学的所有现象最终都可以根据它们组成部分的物理化学规律完全得到说明,物理学和化学的方法完全适合生物学研究。DNA 双螺旋结构发现者之一克里克就断言:“生物学当代运动的最终目标事实上就是根据物理学和有机化学解释生物学。对于这一点有很多理由。因为化学和物理学的相关部分……量子力学与我们关于化学的经验知识一起,表明能为我们提供建立生物学的确定性基础,这与牛顿力学……为比如机械工程提供基础是同样的方式。”(〔4〕.P10)

物理学和化学之所以能为生物学提供一个“确定性基础,”在这些人看来,是因为生物体最终是由物理材料——运动中的分子和原子组成的。这些分子和原子在生物体中被聚集在不同的组织水平上,一些水平甚至能避开其它水平自主地活动,但是最终都是物理学和化学的产物。因而克里克说:“最终人们希望生物学的整体可根据比它低的水平进而正好从原子水平得到解释”。(〔4〕P.12)

既然生物有机体可以从其组成部分的物理特性和化学特性得到解释,所以这些生物学家和哲学家继续断言,整个生物学最终将变为物理学和化学的一个分支。

这些生物学家和哲学家就是我们所说的分支论者,概括起来,他们认为:“生物学最好能成为物理科学的一个分支,一个能够通过运用物理科学方法,现在特别是物理学和有机化学的方法发展的独立分支”。(〔3〕P16)他们把分子生物学作为用物理学和化学研究生物学的最成功的范例,因此,对他们来说,生物学的其余部分都应象分子生物学一样,主动地与物理化学靠近。目前,生物学和物理科学之间仍然存在着很大差别,有许多生命现象还不能用物理学和化学解释,但他们认为,随着生物学和物理学的发展,最终都可以用物理学和化学来解释。

然而,除了分子生物学之外,群体遗传学、综合进化论、生态学、行为学、分类学等生物学学科在本世纪也得到了革命性发展,“都显示空前繁荣,茁壮成长”。这些学科都有其本身的词汇,方法论和概念结构,与其它学科特别是物理科学很少联系或只有最少的接触。因此,面对分支论的挑战,从事这些学科研究的生物学家以及从这些学科搜集材料的哲学家就认为,尽管物理学和化学方法在生物学研究中曾取得过振奋人心的成绩,但是物理学和化学的方法并不能完全适合生物学的主题内容。他们认为“生物学真正重要的目标以及获得这些目标的适当方法,与其它科学的目标和方法是如此不同,以致于生物学的理论和实践必须与物理学和理论实践保持持续的隔离。”(〔3〕.p16) 这些生物学家和哲学家就是自主论者。根据他们的观点,生物学追寻的是回答物理学不能回答的问题,因而生物学必须运用物理学提供不了的方法和手段,当然,生物学也可自由地借用物理学的理论和方法,但它不能仅仅简单地靠借用发展,它必须形成自己的方法。生物学运用物理学方法在某些方面能够取得成绩,但生物学若运用自己独立的方法则会取得更大更明显的成就。分支论与后实证主义的观点是一致的,但在自主论者看来,后实证主义从物理学中得出的科学图景对生物学来说是完全错误的。生物学当然是一门自主的学科,后实证主义那种建立在物理科学基础之上的科学统一观念会使生物学走向迷途,并阻碍生物学的快速发展。

除了分子生物学以及宏观生物学自身研究特点、研究方法使一些人支持分支论、一些人支持自主论外,未来生物学研究的重点在哪一个方面,也是人们支持分支论或自主论的重要原因,或者说是动机。著名生物学家和哲学家恩斯特·迈尔曾说:“许多物理学家坚信全部生物学的见解都能归结为物理学的定律,这种情况使许多生物学家为了自卫而主张生物学的自主性,很自然,不只是物理学家,而且信奉本质论的哲学家也极力反对这种生物学的解放运动,但是这种解放运动在最近几十年不断增强了力量。物理科学的原则,理论和定律是不是能说明生物科学中的每件事呢?生物学至少部分的是不是自主的科学呢?对于这些问题的冷静讨论,由于物理科学和生物科学明显的对抗情绪,甚至是互相敌对的情绪,就成为非常困难的事情。许多人曾经想把各门科学分类排列,把数学(或者特别把几何学)规定为科学的皇后。在为争取各项荣誉如诺贝尔奖金、政府及大学的预算、职位以及在非科学家中的普遍声望的竞争中,这种对立变得非常表面化了”。(〔1〕.pp37—38) 从迈尔的话里我们可以看出,生物学家支持或反对生物学自主性的一个重要原因是为自己从事的职业的重要性作辩护。

3.争论问题的展开

围绕“生物学和物理学是否不同和怎样不同这个基本问题,自主论和分支论展开了一系列的争论。从争论问题的普遍性程度看,主要有以下几个不同层次的问题:

首先,最普遍的一个问题是生物学和物理学研究的目标或战略是否相同的问题。自主论认为,在生物学和物理学的基本研究战略中存在如下一个明显的差别:物理科学的解释框架是机械论的,而生物学的解释框架则是有目的的、目的论的或功能的。这里所说的机械论广义地说是指这样一种观点:一个系统的行为是通过它的组成部分的牛顿性质——位置和动量(或它们的其它替代量)决定的,一个机械(力学)系统的行为是该系统组成部分的位置和动量数值的数学函数。物理科学对其需要解释的现象都是通过扩展这些力学概念及建立这种数学函数解释的。生物学的解释框架则与此不同,主要是目的论的。这里所说的目的论是指通过寻求系统的目标、功能、需要来解释系统的行为。生物学在解释生物现象时不是通过寻求构成生命系统的力学行为来完成,而是通过发现整个系统以及它的组成部分服务的目标、功能或需要来解释。这就是说,生物学解释主要依靠的是对生物系统服务目标的正确辩别,而在物理科学中,没有目标、目的、功能、需要等概念的位置和空间。因此,生物学和物理科学研究的总体目标就不相同:一个通过把现象分解成它的组成部分的力学行为来解释,另一个则通过在一个给定的现象中辩别出一个功能网络来解释。在这种情况下,两个领域的基本研究战略就必然不同。

分支论者也承认物理科学与生物科学在解释方式上存在这种差别,但与自主论者相反,他们认为这种差别是表面的,是可以排除的。

争论的第二层次的问题是关于生物学和物理科学中理论的本性、数目和关系问题。物理科学的研究对象可区分出不同的层次,对不同层次对象的研究可形成不同的理论,发展出不同的学科分支。这些不同的学科分支和理论可能是独立研究、独立建立的,然而,在物理科学中已达到这样一种水平,不同层次的理论可以逻辑地、数学地整合在一起。力学、光学、热学、电磁学、量子力学、相对论以及化学键理论、化学动力学理论、平衡常数理论等,都如此紧紧地连结在一起,以致于我们可以把这些理论从更基本的到派生的加以分类,然后用基本的解释派生的,并且可以根据一个领域的理论新进展预测另一个领域理论发展的情况。相比之下,生物科学中的各种理论间的联系就没有这么紧密。进化论、遗传学、生态学、古生物学、胚胎学、发育学、生理学等等学科都有其自身的理论,但这些理论之间的联系,并不象物理科学那样可以形成演绎关系,可以数学地整合在一起。举例来说,进化论对生物学的地位,就象牛顿力学对物理学的地位一样重要,然而,它们的理论结构却大不一样。牛顿力学本身的定律可用数学公式表示,其定律之间可形成严密的推理关系,其理论体系可用公理化方法建立,而进化论的理论内容只能定性描述而不能数学化,尽管有人试图对进化论也作公理化处理。通过牛顿力学可以推演出物理科学其它领域的一系列理论,而通过自然选择理论却推不出比如分类学、古生物学、形态学、胚胎学、生态学、遗传学中的有关理论,尽管有人说自然选择理论统一了这些学科。面对生物科学与物理科学理论本性、数目和关系的这些差别,自主论认为,这反映了生物科学自身的独特特点,说明生物学是一门自主的科学,而分支论则认为这种差别是暂性的,这表明生物学在目前还不是一门特别完善的科学,随着生物学的发展,这种差别将最终消失。

争论的第三层次的问题是关于生物学中是否存在规律以及规律的形式问题。一般说来,物理科学的理论是由一系列规律或定律经整合或演绎构成的。因此,传统科学哲学都把规律或定律看作是科学理论的象征,认为任何一门科学都应有自己独特的规律或定律。生命科学理论范式的形成,使一些人对此发生了怀疑。生物科学的理论是由规律或定律构成的吗?在当前的争论中,一些自主论者提出了否定意见,认为在生命科学中并不存在规律,他们认为规律或定律的观念是传统科学哲学的偏见,新哲学应摒弃这种偏见。生物学若没有规律,生物学如何存在和发展呢?这些人认为在生物科学的理论结构中概念起着中心地位,生物学的发展表现在概念含义的扩展和新概念的提出。不过,也有一些自主论者象分支论者一样承认生物学中存在规律,但他们同时又认为,这种规律是独特的,与物理科学的规律相比,不仅在内容上而且在形式上都是不同的。这些自主论者认为,物理科学的规律反映的是推挽式的(push—pull)因果机制一个在先的原因产生一个或多个结果,而生物学的规律描述的却是生物目标、目的或功能与为了得到它们的生物系统之间的关系。目标和它解释的行为之间的关系不是物理意义上的因果关系,因为在物理科学中,在后的目标不能解释产生它的事件,但在生物学中,先在事件是由目标解释的。因此,物理科学中的规律是因果性的,而生物科学中的规律则是功能性的或目的论的。反对这一点的分支论者长期以来一直试图分析自主论者所说的规律的意义,以便它们也能在非目的论的概括下被表达。分支论者认为,生命现象不过是物理现象的一个复杂的种类,所以对生物学现象的描述与对物理现象的描述就没有什么种类上或本质上的区别。对他们来说,目的论描述或者是物理规律的方便省略,或者是通向另外的用物理规律对生命现象作更精确的描述的中转站。

争论的第四个层次的问题是关于一些只在生物学中出现而不在物理科学中出现的概念和语词的含义的争论。比如关于生物学和物理学研究战略差别的重大争论 目的论和因果关系的争论必然要涉及到一些概念,象“适合”、“适应”、“竞争”、“掠夺”、“拟态”等。在分子生物学中,人们毫无顾忌地使用象“识别”、“密码”、“错误”等概念。这些概念都是目的论的概念,在物理学中是不存在的。它们能被转译成没有目的论的概念吗?它们在生物学中的存在是否说明生物学有严重错误的内容?这些都是值得深入思考的问题。

总之,围绕生物学哲学的基本问题,哲学家们在从整体研究纲领、目标直到个体概念四个不同层面的具体问题展开自己的讨论,这些问题即互相区别又互相联系,使生物学哲学从总体上既表现出内容上的多样性,又表现出统一性。

参考文献

〔1〕迈尔著,刘jùn@①jùn@①等译,《生物学思想的发展》,湖南教育出版社,1990年版。

〔2〕迈尔著,涂长晟等译,《生物学哲学》,辽宁教育出版社, 1993年版。

〔3〕A. Roseberg, The Structure of Biological Science CambridgeUniversity Press, 1985

〔4〕.F.Crick, Of Molecules and Men. Seattle:University ofWashington Press, 1966

生命科学概论论文 篇3

摘要:

随着经济与科学的发展,生命科学在生活的各个方面都不乏它的身影。生物科学技术的发展也推动了人类经济的快速前进。在物质多元化的今天,人们的生活也越来越不能缺乏生物科学的指引。生物对人的生活息息相关,生物作为整个生命过程的重要的参与者和决策者,对整个人类社会的发展有着重要的有着重要的指导意义。在物质高速发展的今天,我们人类社会的进步与发展更离不开生物的参与。生命科学概论就是从这一环节出发,从生物学的角度告诉我们,人类社会的发展离不开生物的息息相伴。生命科学概论通过细胞的癌变、微生物学基础、生物资源、生物多样性、血液与淋巴、遗传病、生物能源、生物伦理学、疫苗等章节并将其中的理论知识贯穿于教学视频中,让我们对生物这一门学科的理解更为深刻。生命科学概论中对生物的研究出促进了生物学以及人类社会经济的发展,将生物学更进一步的为我们人类做出贡献。

关键词:

生物科学 人类社会 经济 多样性 科学 科学技术

正文:生命科学概论生命科学概论通过细胞的癌变、微生物学基础、生物资源、生物多样性、血液与淋巴、遗传病、生物能源、生物伦理学、疫苗等章节以及视频教学讲诉了生物学对人类社会发展所起的不可磨灭的作用。

1、细胞的癌变

细胞的癌变是指在个体发育过程中,大多数细胞能够正常完成细胞分化。但是,有的细胞由于受到致癌因子的☆☆作用,不能正常完成细胞分化,因而变成了不受机体控制的、连续进行分裂的恶性增殖细胞,这种细胞就是癌细胞。细胞的畸形分化,与癌细胞的产生有直接关系。在我们人类社会,癌症的存在是普遍的,癌症的存在和发生与我们生活的环境是有着密切的联系的。生活在环境较好的地区的人患癌症的几率就相对较小,反之亦然 。当然,癌细胞的转化也与我们的心理活动存在着密切的联系。可以说,癌细胞是与生俱来的得。只是它只会在适当的时机用基因所表达出来而已。

癌细胞与正常细胞相比有三大特征:

1、癌细胞的形态结构发生了变化 。

2、能够无限增殖。

3、癌细胞的表面也发生了变化。

由癌细胞的这三大特征就可以看出来癌细胞对我们人类来说是一个多么可怕的存在。由于细胞膜上的糖蛋白等物质减少,使得细胞彼此之间的黏着性减小,因而容易移动,转移至其他组织或器官中分裂,生长。癌细胞转移是患者死亡的重要原因。为防止正常细胞的癌变,应尽量避免接触各种致癌物质,还要保持健康的心态,注意增强体制,养成良好的生活习惯。

癌细胞的致癌因子主要分为内因和外因两种。外因主要为:物理致癌因子,化学致癌因子和病毒致癌因子。内因主要是人和动物体内普遍存在原癌基因,正常处于抑制状态。原癌基因一旦被激活,就有可能发生癌变。 所以,要预防癌症的发生,我们就必须从自己做起,养成良好的生活习惯,杜绝癌症在自己体内的发生。

2、微生物学的基础

微生物是包括细菌、病毒、真菌以及一些小型的原生动物、显微藻类等在内的一大类生物群体,它个体微小,却与人类生活关系密切。涵盖了有益有害的众多种类,广泛涉及健康、食品、医药、工农业、环保等诸多领域。从它的定义我们就可以了解到微生物的存在是普遍的。微生物个体微小,结构简单,通常要用光学显微镜和电子显微镜才能看清楚的生物,统称为微生物。微生物包括细菌、病毒、霉菌、酵母菌等。

微生物是地球上普遍存在的群体,它们有着自己的特点、共性以及类群。微生物的特点主要为个体微小、构造简单、进化地位低、大多依靠有机物维持生命。微生物的共性主要为体积小,面积大;吸收多,转化快 ;生长旺,繁殖快;适应强,易变异;分布广,种类多。类群为细菌、病毒、真菌、放线菌、立次克体、支原体、衣原体、螺旋体。

微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉素抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。

微生物对人类另一个最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。

3、生物资源

生物资源是自然资源的有机组成部分,是指生物圈中对人类具有一定经济价值的动物、植物、微生物有机体以及由它们所组成的生物群落。生物资源包括基因、物种以及生态系统三个层次,对人类具有一定的现实和潜在价值,它们是地球上生物多样性的物质体现。自然界中存在的生物种类繁多、形态各异、结构千差万别,分布极其广泛,对环境的适应能力强,如平原、丘陵、高山、高原、草原、荒漠、淡水、海洋等都有生物的分布。目前已经鉴定的生物物种约有200万种,据估计,在自然界中生活着的生物约有2000~5000万种。它们在人类的生活中占有非常重要的地位,人类的一切需要如衣、食、住、行、卫生保健等都离不开生物资源。此外,它们还能提供工业原料以及维持自然生态系统稳定。地球是人类赖以生存的家园,是人类的栖身之所、衣食之源。所以我们人类更应该好好保护地球的生物资源,合理的加以利用,以维护我们赖以生存的家园。

生物资源包括动物资源、植物资源和微生物资源三大类,在三大大类广布于我们所生活的世界,并对我们的生活与发展有着举足轻重的影响。